[image:]

Submitted by – Sharmila Rana
Assignment of SQL
Interview Level :
Q1. Write a query to print the company_code, founder name, total number of lead managers, total number of senior managers, total number of managers, and total number of employees. Order your output by ascending company_code.
· Solution: SELECT c.company_code, c.founder, count(distinct l.lead_manager_code) as lead_managers,
count(distinct s.senior_manager_code)as senior_managers,
count(distinct m.manager_code) as managers,
count(distinct e.employee_code)as employees
FROM company as c
JOIN lead_manager as l using(company_code)
JOIN senior_manager as s using(company_code)
JOIN manager as m using(company_code)
JOIN employee as e using (company_code)
GROUP BY c.company_code, c.founder
ORDER BY company_code asc;

Q2. Write a query to generate a report containing three columns: Name, Grade and Mark. Ketty doesn't want the NAMES of those students who received a grade lower than 8. The report must be in descending order by grade -- i.e. higher grades are entered first. If there is more than one student with the same grade (8-10) assigned to them, order those particular students by their name alphabetically. Finally, if the grade is lower than 8, use "NULL" as their name and list them by their grades in descending order. If there is more than one student with the same grade (1-7) assigned to them, order those particular students by their marks in ascending order. Write a query to help Eve
· Solution : SELECT CASE
WHEN g.grade >= 8 THEN s.name
ELSE 'NULL'
END as Name, g.grade as Grade, s.marks as Marks from students s
JOIN grades g on s.marks<=g.max_marks and s.marks >=g.min_marks
ORDER BY g.grade desc,
CASE
WHEN g.grade >= 8 THEN s.name
ELSE s.marks
END asc;

Q3. Write a query to print the respective hacker_id and name of hackers who achieved full scores for more than one challenge. Order your output in descending order by the total number of challenges in which the hacker earned a full score. If more than one hacker received full scores in same number of challenges, then sort them by ascending hacker_id.
· Solution: SELECT concat(hackers.hacker_id,' ', name) as Ans
FROM hackers join submissions using(hacker_id)
JOIN challenges using(challenge_id) join difficulty using(difficulty_level)
WHERE submissions.score = difficulty.score group by hackers.hacker_id, name having count(submissions.score) = count(difficulty.score)and sum(submissions.score) = sum(difficulty.score)
ORDER BY hackers.hacker_id desc limit 1;

Q4. Write a query to output the names of those students whose best friends got offered a higher salary than them. Names must be ordered by the salary amount offered to the best friends. It is guaranteed that no two students got same salary offer.
· Solution: SELECT s.name FROM student s
JOIN friends f on s.id=f.id
JOIN packages ps on s.id=ps.id
JOIN packages pf on f.friend_id=pf.id
WHERE pf.salary>ps.salary group by s.name, pf.salary
ORDER BY pf.salary desc;

[bookmark: _GoBack]Medium Level:

	Performance_ID
	Employee_ID
	Manager_ID
	Project_ID
	Performance_rating
	Feedback

	1
	1
	1
	2
	9
	Excellent

	2
	2
	2
	3
	8
	Good

	3
	3
	1
	2
	9
	Excellent

	4
	4
	1
	2
	9.3
	Excellent

	5
	5
	3
	1
	9
	Excellent

	6
	6
	1
	3
	8.5
	Good

	7
	7
	3
	1
	8
	Good

	8
	8
	2
	3
	5
	Average

	9
	9
	2
	3
	6
	Average

	10
	10
	3
	1
	9.4
	Excellent

	11
	11
	4
	4
	7
	Average

	12
	12
	1
	2
	9.5
	Average

	13
	13
	4
	4
	8.5
	Good

	14
	14
	4
	4
	8
	Good

	15
	15
	Null
	Null
	
	Worst

	16
	16
	Null
	Null
	
	Worst

	Employee_ID
	Performance_ID
	Manager
	Manager_ID
	Employee_name
	Project_ID
	Department
	Salary
	Experience
	Projects

	1
	1
	Aizen
	1
	Mohit
	2
	IT
	50,000
	2
	Project “A”

	2
	2
	Ichigo
	2
	Reema
	3
	Sales
	30,000
	1
	Project ”B”

	3
	3
	Aizen
	1
	Harish
	2
	IT
	50,000
	2
	Project ”A”

	4
	4
	Aizen
	1
	Paras
	2
	IT
	95,000
	4
	Project ”A”

	5
	5
	Shunsui
	3
	Shivam
	1
	HR
	77,000
	4
	Project “C”

	6
	6
	Ichigo
	1
	Harsh
	3
	Sales
	30,000
	1
	Project ”B”

	7
	7
	Shunsui
	3
	Dorthy
	1
	HR
	65,000
	3
	Project “C”

	8
	8
	Ichigo
	2
	Archana
	3
	Sales
	18,000
	Null
	Project ”B”

	9
	9
	Ichigo
	2
	Vishal
	3
	Sales
	18,000
	Null
	Project ”B”

	10
	10
	Shunsui
	3
	Shubendu
	1
	HR
	1,50,000
	8
	Project “C”

	11
	11
	Rukia
	4
	Drigga
	4
	Finance
	48,000
	3
	Project “D”

	12
	12
	Aizen
	1
	Maninder
	2
	IT
	1,45,000
	7
	Project ”A”

	13
	13
	Rukia
	4
	Nithish
	4
	Finance
	1,15,000
	6
	Project “D”

	14
	14
	Rukia
	4
	Shubham
	4
	Finance
	74,000
	5
	Project “D”

	15
	15
	Null
	Null
	Null
	Null
	Finance
	17,000
	Null
	Null

	16
	16
	Null
	Null
	Prince
	Null
	Null
	Null
	Null
	Null

Q 1. Retrieve the Department along with the average Performance_rating for each department.
· Solution: SELECT e.department , avg(p.performance_rating) as avg_rating
FROM employees_details as e
JOIN performance as p on e.Employee_ID=p.Employee_ID
GROUP BY e.Department;

Q 2. Retrieve the Employee_name, Department, and Performance_rating of employees whose Performance_rating is above 8 and are assigned to project ID 1.
· Solution: SELECT e.employee_name, e.department, p.performance_rating
FROM employees_details as e
JOIN performance as p on e.Employee_ID=p.Employee_ID
WHERE p.Performance_rating>8 and p.Project_ID=1;

Q 3. No Question

Q 4. Retrieve the Employee_name and Performance_rating for employees whose Performance_rating is higher than the average Performance_rating for their respective departments.
· Solution: SELECT e.department ,e.employee_name, p.performance_rating
FROM employees_details as e
JOIN performance as p on e.Employee_ID=p.Employee_ID
WHERE p.Performance_rating>
(SELECT avg(p.Performance_rating) FROM performance as p);

Q 5. Retrieve the Department along with the average Performance_rating for departments having an average Performance_rating greater than 7.
· Solution: SELECT e.department, avg(p.performance_rating)
FROM employees_details as e
JOIN performance as p on e.Employee_ID=p.Employee_ID
GROUP BY e.department having avg(p.performance_rating)>7 ;

Q6. No Question

Q 7. Retrieve the Employee_name for employees who have a corresponding record in the employee_performance table and do not have a manager.
· Solution: SELECT e.employee_name
FROM employees_details as e
JOIN performance as p on e.Employee_ID=p.Employee_ID
WHERE manager="null";

Q 8. Create a temporary table containing the Employee_name and Performance_rating of employees. Then, retrieve the details of employees along with their department names from both the employee table and the temporary table.
· Solution: CREATE table temp_table(employee_name varchar(20), performance_rating float);
insert into temp_table values("Mohit",9),("Reema",8),("Harish",9),("Paras",9.3),("Shivam",9),("Harsh",8.5),("Dorthy",8),("Archana",5),("Vishal",6),("Shubendu",9.4),("Drigga",7),("Maninder",9.5),("Nithish",8.5),("Shubham",8),(Null,Null),("Prince",Null);
SELECT e.employee_name, e.department
FROM employees_details as e
JOIN temp_table t on e.employee_name=t.employee_name;

Q 9. Retrieve the Employee_name and Department for employees who are assigned to a project with a Project_ID greater than 2.
· Solution : SELECT employee_name, department , project_id
FROM employees_details
WHERE Project_ID>2;

Q 10. Retrieve the Employee_name, Department, and Project_name for employees assigned to projects with manager name “Kurosaki”.
· Solution: SELECT employee_name , department, projects
FROM employees_details
WHERE Manager="Kurosaki";

image1.png
QTHETA
ACADEMY

