Name: Seema Rani (GU-2022-2272) BBA4

SQLADVANCED
Q 1 Retrieve the Department along with the average Performance_rating for each department.
· Select e.department, avg(d.Performance_rating) as avgRating from advancedt e join sqladvanced d using (Employee_ID) group by e.department ;
Q 2 Retrieve the Employee_name, Department, and Performance_rating of employees whose Performance_rating is above 8 and are assigned to project ID 1.
· Select e.Employee_name, e.Department, p.Performance_rating from advancedt e join sqladvanced p on e.Employee_ID = p.employee_id where p.Performance_rating > 8 AND p.project_id = 1;
Q 3 No question??

Q 4 Retrieve the Employee_name and Performance_rating for employees whose Performance_rating is higher than the average Performance_rating for their respective departments.
· SELECT e.Department, e.employee_name, m.performance_rating FROM advancedt e join sqladvanced m using (employee_id) WHERE m.Performance_rating >(SELECT AVG(m.Performance_rating) from sqladvanced m);
Q 5 Retrieve the Department along with the average Performance_rating for departments having an average Performance_rating greater than 7.
· SELECT e.Department, AVG(m.Performance_rating) AS average_performance_rating FROM advancedt e join sqladvanced m using (employee_id) GROUP BY e.Department HAVING AVG(m.Performance_rating) > 7;

Q 6 No Question

Q 7 Retrieve the Employee_name for employees who have a corresponding record in the employee_performance table and do not have a manager.
· select e.employee_name , e.Employee_ID , m.Performance_rating from advancedt e join sqladvanced m using (employee_id) where manager="null" and Feedback="worst";

Q 8 Create a temporary table containing the Employee_name and Performance_rating of employees. Then, retrieve the details of employees along with their department names from both the employee table and the temporary table.
· create table temp_table (employee_name varchar (20), performance_rating int);
· select e.employee_name , e.department from advancedt e join temp_table m on e.employee_name=m.employee_name;
Q 9 Retrieve the Employee_name and Department for employees who are assigned to a project with a Project_ID greater than 2.
· SELECT EMPLOYEE_NAME , department , project_id from advancedt having project_id>2;
Q 10 Retrieve the Employee_name, Department, and Project_name for employees assigned to projects with manager name “Kurosaki”.
· Select employee_name, department , projects from advancedt where manager="Kurosaki";

Interview based Questions:-
Question-> 1
Given the table schemas below, write a query to print the company_code, founder name, total number of lead managers, total number of senior managers, total number of managers, and total number of employees. Order your output by ascending company_code.
 create table company (company_code varchar(20) primary key , founder varchar(20));
create table lead_manager(lead_manager_code varchar(20) primary key, company_code varchar(20), foreign key (company_code) references company(company_code));
create table senior_manager (senior_manager_code varchar(20) primary key , lead_manager_code varchar(20),foreign key (lead_manager_code) references lead_manager(lead_manager_code),
 company_code varchar(20), foreign key (company_code) references company(company_code));
 create table manager (manager_code varchar(20) primary key , senior_manager_code varchar(20),lead_manager_code varchar(20), company_code varchar(20),foreign key (senior_manager_code) references senior_manager(senior_manager_code),
 foreign key (lead_manager_code) references lead_manager(lead_manager_code),
 foreign key (company_code) references company(company_code));
 create table employee (employee_code varchar(20) primary key ,manager_code varchar(20), senior_manager_code varchar(20), lead_manager_code varchar(20), company_code varchar(20), foreign key (manager_code) references manager(manager_code),foreign key (senior_manager_code) references senior_manager(senior_manager_code),
 foreign key (lead_manager_code) references lead_manager(lead_manager_code),foreign key (company_code) references company(company_code));
 insert into company values ("C1", "Monika"),("C2","Samantha");
 insert into lead_manager values ("LM1","C1"), ("LM2","C2");
 INSERT INTO SENIOR_MANAGER VALUES ("SM1","LM1","C1"),("SM2","LM1","C1"),("SM3","LM2","C2");
 INSERT INTO MANAGER VALUES ("M1","SM1","LM1","C1"),("M2","SM3","LM2","C2"),("M3","SM3","LM2","C2");
 INSERT INTO EMPLOYEE VALUES ("E1","M1","SM1","LM1","C1"),("E2","M1","SM1","LM1","C1"),("E3","M2","SM3","LM2","C2"), ("E4","M3","SM3","LM2","C2");
 SELECT c.company_code,c.founder,
COUNT(DISTINCT lm.lead_manager_code) AS total_LM,
COUNT(distinct SM.senior_manager_code) AS total_SM,
COUNT(DISTINCT m.manager_code) AS total_M,
COUNT(DISTINCT e.employee_code) AS total_E FROM company c
LEFT JOIN lead_manager lm ON c.company_code = lm.company_code
LEFT JOIN senior_manager sm ON c.company_code = sm.company_code
LEFT JOIN manager m ON c.company_code = m.company_code
LEFT JOIN employee e ON c.company_code = e.company_code
GROUP BY c.company_code, c.founder ORDER BY c.company_code ASC;

Question 2->
Ketty gives Eve a task to generate a report containing three columns: Name, Grade and Mark. Ketty doesn't want the NAMES of those students who received a grade lower than 8. The report must be in descending order by grade -- i.e. higher grades are entered first. If there is more than one student with the same grade (8-10) assigned to them, order those particular students by their name alphabetically. Finally, if the grade is lower than 8, use "NULL" as their name and list them by their grades in descending order. If there is more than one student with the same grade (1-7) assigned to them, order those particular students by their marks in ascending order.
Write a query to help Eve.
SELECT S.Name,G.Grade,S.Marks FROM Students S JOIN Grades G ON S.Marks <= G.Max_Mark and S.Marks >= G.Min_Mark WHERE G.Grade >= 8 ORDER BY G.Grade DESC, S.Name ASC;
SELECT 'NULL' as Name,G.Grade,S.Marks
FROM Students S JOIN Grades G
ON S.Marks <= G.Max_Mark and S.Marks >= G.Min_Mark
WHERE G.Grade < 8
ORDER BY G.Grade DESC, Marks ASC;

Question3->
Julia just finished conducting a coding contest, and she needs your help assembling the leaderboard! Write a query to print the respective hacker_id and name of hackers who achieved full scores for more than one challenge. Order your output in descending order by the total number of challenges in which the hacker earned a full score. If more than one hacker received full scores in same number of challenges, then sort them by ascending hacker_id.

· [bookmark: _GoBack]select concat(hackers.hacker_id,' ', name) as winner from hackers join submissions using(hacker_id)
join challenges using(challenge_id) join difficulty using(difficulty_level)
 where submissions.score = difficulty.score group by hackers.hacker_id having count(submissions.score) = count(difficulty.score)
 and sum(submissions.score) >sum(difficulty.score) order by hackers.hacker_id desc limit 1;
Question 4->
Write a query to output the names of those students whose best friends got offered a higher salary than them. Names must be ordered by the salary amount offered to the best friends. It is guaranteed that no two students got same salary offer.
· select s.name from student s join friends f on s.id=f.id
join packages ps on s.id=ps.id join packages pf on f.friend_id=pf.id
where pf.salary>ps.salary group by s.name, pf.salary order by pf.salary desc;

