MEDIUM LEVEL QUESTIONS

 Q 1. Retrieve the Department along with the average Performance_rating for each department.
select Department, avg(salary) as Average from office group by department order by Average desc;

 Q 2. Retrieve the Employee_name, Department, and Performance_rating of employees whose Performance_rating is above 8 and are assigned to project ID 1.
select Employee_name, Department, Performance_rating from office as o join ratings as r using(employee_id) where Performance_rating >= 8 and o.Project_ID = 1;

 Q3. No Question

 Q 4. Retrieve the Employee_name and Performance_rating for employees whose Performance_rating is higher than the average Performance_rating for their respective departments.
select Employee_name, Performance_rating from office join ratings using (Employee_ID) where performance_rating > (select avg(performance_rating) from ratings);

 Q 5. Retrieve the Department along with the average Performance_rating for departments having an average Performance_rating greater than 7.
select Department, avg(performance_rating) as Average from office join ratings using (Employee_ID) group by department having average > 7;

 Q6: - -

 Q 7. Retrieve the Employee_name for employees who have a corresponding record in the employee_performance table and do not have a manager.
select Employee_name from office inner join ratings using (Employee_ID) where manager is not Null ;

 Q 8. Create a temporary table containing the Employee_name and Performance_rating of employees. Then, retrieve the details of employees along with their department names from both the employee table and the temporary table.
create temporary table EmployeeTempTable (select employee_name, performance_rating from office join ratings using(performance_id));
select e.*, department from employeetemptable as e left join office using(employee_name);

Q 9. Retrieve the Employee_name and Department for employees who are assigned to a project with a Project_ID greater than 2.
select Employee_name, Department from office where Project_ID > 2;

 Q 10. Retrieve the Employee_name, Department, and Project_name for employees assigned to projects with manager name “Kurosaki”.
select Employee_name, Department,Projects from office where Manager = 'Kurosaki';



INTERVIEW LEVEL QUESTIONS

QUESTION 1: Given the table schemas below, write a query to print the company_code, founder name, total number of lead managers, total number of senior managers, total number of managers, and total number of employees. Order your output by ascending company_code.
ANSWER 1 : select concat(Company_Code,' ', Founder,' ', count(distinct lead_manager.lead_manager_code),' ', count(distinct senior_manager.senior_manager_code),' ', count(distinct manager.manager_code),' ', count(distinct employee.employee_code)) as Answer from company join lead_manager using(company_code) join senior_manager using(company_code) left join manager using(company_code) join employee using(company_code) group by company_code;

 QUESTION 2 : Ketty gives Eve a task to generate a report containing three columns: Name, Grade and Mark. Ketty doesn't want the NAMES of those students who received a grade lower than 8. The report must be in descending order by grade -- i.e. higher grades are entered first. If there is more than one student with the same grade (8-10) assigned to them, order those particular students by their name alphabetically. Finally, if the grade is lower than 8, use "NULL" as their name and list them by their grades in descending order. If there is more than one student with the same grade (1-7) assigned to them, order those particular students by their marks in ascending order.
ANSWER 2 : select concat(case when g.grade >= 8 then s.name else 'NULL' end,' ', g.grade,' ', s.marks) as Answer from students as s join grades as g on s.marks between g.min_mark and g.max_mark order by g.grade desc;

 QUESTION 3 : Julia just finished conducting a coding contest, and she needs your help assembling the leaderboard! Write a query to print the respective hacker_id and name of hackers who achieved full scores for more than one challenge. Order your output in descending order by the total number of challenges in which the hacker earned a full score. If more than one hacker received full scores in same number of challenges, then sort them by ascending hacker_id.
ANSWER 3 : select concat(hackers.hacker_id,' ', name) as Answer from hackers join submissions using(hacker_id) join challenges using(challenge_id) join difficulty using(difficulty_level) where submissions.score = difficulty.score group by hackers.hacker_id having count(submissions.score) = count(difficulty.score)and sum(submissions.score) = sum(difficulty.score) order by hackers.hacker_id desc limit 1;

 QUESTION 4 : You are given three tables: Students, Friends and Packages. Students contains two columns: ID and Name. Friends contains two columns: ID and Friend_ID (ID of the ONLY best friend). Packages contains two columns: ID and Salary (offered salary in $ thousands per month). Write a query to output the names of those students whose best friends got offered a higher salary than them. Names must be ordered by the salary amount offered to the best friends. It is guaranteed that no two students got same salary offer.
ANSWER 4 : select s.name from students s join friends as f on s.id = f.id join packages p1 on s.id = p1.id join packages p2 on f.friend_id = p2.id where p2.salary > p1.salary order by p2.salary desc;
